Basically when you cut thrust you must pass through that altitude again or escape orbit.
So either fire a rocket in space to circularize the orbit or reach more than Earth’s escape velocity 25,020 mph (11.186 km/s, 40,270 km/h) ~ Mach 32.6, due to some drag in air to thin for any kind of air breathing engine to work.
X-30 was aiming far lower ~Mach 20. Nuclear could make it more realistic than any form of chemical combustion. It might be physically possible using Hydrogen but you’re talking generating extreme thrust at vastly more extreme conditions than the space shuttle’s retry.
Yea thus ‘Basically’ you can also escape earth’s orbit slightly more easily using the sun. However, none of this really helps much you’re still looking at more than escape velocity in atmosphere with a purely air breathing engine due to drag.
So either fire a rocket in space to circularize the orbit or reach more than Earth’s escape velocity 25,020 mph (11.186 km/s, 40,270 km/h) ~ Mach 32.6, due to some drag in air to thin for any kind of air breathing engine to work.
X-30 was aiming far lower ~Mach 20. Nuclear could make it more realistic than any form of chemical combustion. It might be physically possible using Hydrogen but you’re talking generating extreme thrust at vastly more extreme conditions than the space shuttle’s retry.