> Wouldn’t a language designed for vibe coding naturally dispense with much of what is convenient and ergonomic for humans in favor of what is convenient and ergonomic for machines? Why not have it just write C? Or hell, why not x86 assembly?
In the game we're building we generate, compile and run code (C#) in real time to let the player "train and command" its monster in creative ways. So, I've thought about this.
You need both a popular language and one that has a ton of built-in verifying tools.
The author correctly highlights the former, but dismisses the latter as being targeted to humans. I think it is even more important for LLMs!
These coding agents are excellent at generating plausible solutions, but they have no guarantees whatsoever. So you need to pair them with a verifying system. This can be unit tests, integration tests, static / type checks, formal methods, etc. The point is that if you don't have these "verifier" systems you are creating an open loop and your code will quickly devolve to nonsense [0].
In my view, the best existing languages for vibe coding are:
- Rust: reasonably popular, very powerful and strict type system, excellent compiler error messages. If it compiles you can be confident that a whole class of errors won't exist in your program. Best for "serious" programs, but probably requires more back and forths with the coding agent.
- TypeScript: extremely popular, powerful type system, ubiquitous. Best for rapid iteration.
- Luau: acceptably popular, but typed and embeddable. Best as a real-time scripting sandbox for LLMs (like our use case).
I think there is space for a "Vibe-Oriented Programming" language (VOP as the author says), but I think it will require the dust to settle a bit on the LLM capabilities to understand how much can we sacrifice from the language's lack of popularity (since its new!) and the verifiability that we should endow it with. My bet is that something like AssemblyScript would be the way to go, ie, something very, very similar to an existing, typed popular language (TS) but with extra features that serve the VOP needs.
Another aspect to consider besides verifiability is being able to incrementally analyze code. For structured outputs, we can generate guaranteed structures thanks to grammar-based sampling. There are papers studying how to use LSPs to guide LLM outputs at the token level [1] . We can imagine analyzers that also provide context as needed based on what the LLM is doing, for example there was this recent project that could trace all upstream and downstream information flow in a program thanks to Rust's ownership features [2].
Finally, the importance of a LLM-coding friendly sandbox will only increase: we already are seeing Anthropic move towards using LLMs to generate script as a way to make tool calls rather than calling tools directly. And we know that verifiable outputs are easier to hillclimb. So coding will get increasingly better and probably mediate everything these agents do. I think this is why Anthropic bought Bun.
In the game we're building we generate, compile and run code (C#) in real time to let the player "train and command" its monster in creative ways. So, I've thought about this.
You need both a popular language and one that has a ton of built-in verifying tools.
The author correctly highlights the former, but dismisses the latter as being targeted to humans. I think it is even more important for LLMs!
These coding agents are excellent at generating plausible solutions, but they have no guarantees whatsoever. So you need to pair them with a verifying system. This can be unit tests, integration tests, static / type checks, formal methods, etc. The point is that if you don't have these "verifier" systems you are creating an open loop and your code will quickly devolve to nonsense [0].
In my view, the best existing languages for vibe coding are: - Rust: reasonably popular, very powerful and strict type system, excellent compiler error messages. If it compiles you can be confident that a whole class of errors won't exist in your program. Best for "serious" programs, but probably requires more back and forths with the coding agent. - TypeScript: extremely popular, powerful type system, ubiquitous. Best for rapid iteration. - Luau: acceptably popular, but typed and embeddable. Best as a real-time scripting sandbox for LLMs (like our use case).
I think there is space for a "Vibe-Oriented Programming" language (VOP as the author says), but I think it will require the dust to settle a bit on the LLM capabilities to understand how much can we sacrifice from the language's lack of popularity (since its new!) and the verifiability that we should endow it with. My bet is that something like AssemblyScript would be the way to go, ie, something very, very similar to an existing, typed popular language (TS) but with extra features that serve the VOP needs.
Another aspect to consider besides verifiability is being able to incrementally analyze code. For structured outputs, we can generate guaranteed structures thanks to grammar-based sampling. There are papers studying how to use LSPs to guide LLM outputs at the token level [1] . We can imagine analyzers that also provide context as needed based on what the LLM is doing, for example there was this recent project that could trace all upstream and downstream information flow in a program thanks to Rust's ownership features [2].
Finally, the importance of a LLM-coding friendly sandbox will only increase: we already are seeing Anthropic move towards using LLMs to generate script as a way to make tool calls rather than calling tools directly. And we know that verifiable outputs are easier to hillclimb. So coding will get increasingly better and probably mediate everything these agents do. I think this is why Anthropic bought Bun.
[0] very much in the spirit of the LLM-Modulo framework: https://arxiv.org/pdf/2402.01817 [1] https://proceedings.neurips.cc/paper_files/paper/2023/file/6... [2] https://cel.cs.brown.edu/paper/modular-information-flow-owne...