Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

> 5x to 10x overprovisioning would turn solar from one of the cheaper into the by far most expensive power generation method out there.

This is trivially false if the cost of solar generation (and battery storage) further drops by 5x to 10x.

Additionally that implies the overprovisioned power is worthless in the summer, which does not have to be the case. It might make certain processes viable due to very low cost of energy during those months. Not trivial as those industries would have to leave the equipment using the power unused during winter months, but the economics could still work for certain cases.

Some of the cases might even specifically be those that store energy for use in winter (although then we're not looking at the 'pure' overprovisioning solution anymore).





> This is trivially false if the cost of solar generation (and battery storage) further drops by 5x to 10x.

That's a huge "if". The cost of PV panels has come down by a factor of 10 in the last 13 years or so, that's true. I doubt another 10x decrease is possible, because at some point you run into material costs.

But the real issue is that price of the panels themselves is already only about 35% of the total installation cost of utility-scale PV. This means that even if the panels were free, it would only reduce the cost by a factor of 1.5.


> That's a huge "if". The cost of PV panels has come down by a factor of 10 in the last 13 years or so, that's true. I doubt another 10x decrease is possible, because at some point you run into material costs.

A factor of 5 is certainly within the realms of physics, given the numbers I've seen floating around. Note that prices are changing rapidly and any old price may not be current: around these parts, they're already so cheap they're worth it as fencing material even if you don't bother to power anything with them.

> But the real issue is that price of the panels themselves is already only about 35% of the total installation cost of utility-scale PV. This means that even if the panels were free, it would only reduce the cost by a factor of 1.5.

This should have changed your opinion, because it shows how the material costs are not the most important factor: we can get up to a 3x cost reduction by improving automation of construction of utility-scale PV plants.

I think I've seen some HN startups with this as their pitch, I've definitely seen some IRL with this pitch.


> But the real issue is that price of the panels themselves is already only about 35% of the total installation cost of utility-scale PV. This means that even if the panels were free, it would only reduce the cost by a factor of 1.5.

1. Do the other costs scale with the number of panels? Because if the sites are 5 times the scale of the current ones I would imagine there are considerable scale based cost efficiencies, both within projects and across projects (through standardization and commoditization).

2. Vertically mounted bifacial PV already greatly smoothes the power production curve throughout the day, improving profitability. Lower cost panels make the downside of requiring more panels in such a setup almost non-existent. Additionally, they reduce maintenance/cleaning costs by being mounted vertically.

3. Battery/energy storage (which further improve profitability) costs are dropping and can drop further.

Also, please address the matter of using the overprovisioned power in summer. Possible projects are underground thermal storage ("Pit Thermal Energy Storage", only works in places where heating is required in winter), desalination, producing ammonia for fertilizer, and producing jet fuel.


> 1. Do the other costs scale with the number of panels?

Mostly yes. Once you're at utility-scale, installation and maintainance should scale 1:1 with number of panels. Inverters and balancing systems should also scale 1:1, although you might be able to save a bit here if you're willing to "waste" power during peak insolation.

But think about it this way: If it was possible to reduce non-panel costs by a factor of 5 simply by building 5x larger solar plants, the operating companies would already be doing this. With non-panel costs around 65%, this would result in 65% * (1 - 1/5) = 52% savings and give them a huge advantage over the competition.

> 2. Vertically mounted bifacial PV […] 3. Battery […] costs are dropping

I agree that intra-day fluctuations will be solved by cheaper panels and cheaper batteries, especially once sodium-ion battery costs fall significantly. But I'm specifically talking about seasonal storage here.

> Also, please address the matter of using the overprovisioned power in summer.

I'm quite pessimistic about that. Chemical plants tend to be extremely capital-intensive and quickly become non-profitable if they're effectively idle during half of the year. Underground thermal storage would require huge infrastructure investments into distribution, since most places don't already have district heating.

Sorry, very busy today so I can't go into all details, but I still wanted to give you an answer.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: